What is the decarburization of internal combustion engine components

Components of the chassis

Chassis Manual pp 149-381 | Cite as


Most of the book is devoted to the chassis components. The components are to be understood as the subsystems of the chassis and its modules and components. Since the structure of the chassis can be defined in terms of both function and shape, the result is a system that does not overlap.

This is a preview of subscription content, log in to check access.


Unable to display preview. Download preview PDF.


  1. Braess / Seiffert: Handbook of automotive engineering. Wiesbaden: Vieweg, 2001Google Scholar
  2. Müller, Armin: Active chassis control. Lecture from the CTI event on September 21, 2004. Google Scholar
  3. Fecht, N.: Chassis technology for cars. Landsberg am Lech: Verlag Moderne Industrie, 2004Google Scholar
  4. Herlin, U.: Mechanical v.s. electronic intelligence for safety onroad. 5th Grazer Allradkongress, p. 16 / 1–16 / 5 Graz, 2004Google Scholar
  5. Sacchettini, P.: Torsen Center Differential. 7th Graz All-Wheel Drive Congress, pp. 14 / 1–14 / 16. Graz, 2006Google Scholar
  6. Pelchen, C.: The modular torque vector drive system in SUC. 7th Graz All-Wheel Drive Congress, pp. 11 / 1–12 / 8. Graz, 2006Google Scholar
  7. Mehrhof / Hackbarth: Driving mechanics of tracked vehicles. Aisbach: Lighthouse, 1982Google Scholar
  8. Preukschat, A.: Chassis technology: Drive types. Würzburg: Vogel Verlag, 1988Google Scholar
  9. Schuermans, R.: Development of 4WD System for new Toyota RAV4. 7th Graz All-Wheel Drive Congress, pp. 5 / 1–5 / 8. Graz, 2006Google Scholar
  10. ai] N.N .: NTN company brochure Constant Velocity Universal Joints. Cat No 5601-II, 2000Google Scholar
  11. Breuer, B.; Bill, K.-H.: Brake manual. Wiesbaden: Vieweg Verlag, 2003Google Scholar
  12. Reimpell, J.; Betzier, J. W.: Chassis technology: basics. Würzburg: Vogel Verlag, 2000Google Scholar
  13. Strien, H.: Design and calculation of car brake systems. Self-published. Alfred Teves GmbH, Frankfurt / MainGoogle Scholar
  14. Reimpel, J., Burckhardt, M.: Chassis technology: braking dynamics and car braking systems. Würzburg: Vogel Verlag, 1991Google Scholar
  15. Oehl, K.-H.; Paul, H.-G.: Brake pads for road vehicles. Library of Technology Volume 49. Landsberg / Lech: Verlag Moderne Industrie, 1990Google Scholar
  16. Brecht, J.: Material properties of friction materials. 23rd International Symposium, October 24/25, 2003 Bad Neuenahr.Google Scholar
  17. Weisse, J.: Is there any room for improvement for the brake assist system? 23rd International µ-Symposium, October 24/25, 2003 Bad NeuenahrGoogle Scholar
  18. Rieth, P.: Electronic stability program - the brake that steers. Library of Technology Volume 223. Landsberg / Lech: Verlag Moderne Industrie, 2001Google Scholar
  19. Fennel, H.: ABS plus and ESP - a concept for mastering driving dynamics. In: ATZ Automobiltechnische Zeitschrift (1998), Issue 4Google Scholar
  20. Fennel, H.; Graves, J.; Seibert, W.: Traction Control System with Teves ABS Mark II. SAE Doc.No. 860506, 1986 Google Scholar
  21. Robert Bosch GmbH: Automotive engineering pocket book. Wiesbaden: Vieweg Verlag, 2003Google Scholar
  22. Fennel, H.: Technology Solutions to Vehicle Rollovers. An Integrated Strategy for Active and Passive Rollover Protection. Lecture, SAE Government / Industry Meeting, Washington, 13.-15. May 2002 Google Scholar
  23. Stoll, U.: SBC - the electro-hydraulic brake from Mercedes-Benz. 20th International µ-Symposium, October 27/28, 2000 Bad NeuenahrGoogle Scholar
  24. Schmittner, B.; Rieth, P.: The hybrid brake system - the market launch of the EMB electromechanical brake. brems.tech 2004, 9/10 December 2004 MunichGoogle Scholar
  25. Semmler, S.; Rieth, P.: Global Chassis Control - The networked chassis. 13th Aachen Colloquium "Vehicle and Engine Technology" 04.-06. October 2004Google Scholar
  26. Huinink, H.; Rieth, P.; Becker, A.: Measures to shorten the stopping distance in emergency braking situations - The "30m car". VDA Technical Congress 26.-27. March 2001, Bad HomburgGoogle Scholar
  27. Poestgens, U.: Power steering systems for cars and commercial vehicles. Verlag Moderne Industrie, 2001Google Scholar
  28. Reimpell, J.: Chassis technology: basics; Vogel Verlag, 2005Google Scholar
  29. Fecht, N.: Components for chassis and steering. Library of Technology, Vol. 152. Landsberg / Lech: VerlagModerne Industrie, 1997Google Scholar
  30. Kruger, H.-P.; Neukum, A.; Schuller, J.: Evaluation of vehicle properties - from driving experience to driver feeling. VDI Progress Report, 1999Google Scholar
  31. Neukum, A.; Kruger, H.-P.: Driver reactions to steering system malfunctions - investigation method and evaluation criteria. VDI reports, 2003Google Scholar
  32. Stoll, H.: Chassis technology: steering systems and power steering. Vogel Verlag, 1992Google Scholar
  33. Fischer, F.; Vondracek, H.: Warmly formed feathers. Bochum, 1987Google Scholar
  34. Wallentowitz, H.: Transverse dynamics of motor vehicles, book accompanying the lecture Motor Vehicles II. Aachen, 1996Google Scholar
  35. N.N.: Steel spring elements for the automotive industry. Library of Technology, Volume 140, Landsberg / Lech: Verlag Moderne Industrie, 1997Google Scholar
  36. Kobelev, V.; Neubrand, J.; Brandt, R.: CAD modeling and FE simulation of the coil springs and stabilizers. Seminar vehicle springs. Technical Academy Esslingen, 2005Google Scholar
  37. Borlinghaus, A.: Helical compression springs with progressive and linear characteristics made from wires with inconsistent diameters and helical compression springs adapted to special design conditions. LindlarGoogle Scholar
  38. Brandt, R.: Cold forming technology for car suspension springs - control of the line of action of force and its influence on the damper friction of different axle systems. Lecture Haus der Technik, 02/14/2001, EssenGoogle Scholar
  39. Niephage, P.; Müller, H.: A hybrid procedure for the investigation of any stressed helical compression springs without contact with the coils. SiegenGoogle Scholar
  40. Hoffmann, E.; Brandt, R.; Osterhage, K.; Neubrand, J.: From the concept to the validated component. Shortening the validation time using the example of a cold-formed front axle coil spring: DVM-Tag Berlin, 2002Google Scholar
  41. Coil spring test in all positions. Information brochure from Zwick GmbH & Co. KG. Ulm, 2005Google Scholar
  42. Neubrand, J.: Development trends in materials for chassis springs. Conference "Suspension and damping in the chassis". Düsseldorf: Car Training Institute, 2004Google Scholar
  43. Shivered, O.; Metzner, D.; Krafzig, R.; Bennewitz, K.; Kleeman, A.: Vehicle springs as light as a feather. In: ATZ 103 (2001), Wiesbaden, 2001Google Scholar
  44. Ersoy, M.; Vortmeyer, J.; Grannemann, B.: Switchable stabilizer systems. 5th Grazer Allradkongress, Graz 2004Google Scholar
  45. Ersoy, M.; Gardener, A.; Vortmeyer, J.: AOS + adaptive stabilizer systems with semi-active additional damping. 7th Graz all-wheel drive congress. Graz, 2006Google Scholar
  46. Causemann, P.: Motor vehicle shock absorbers. Verlag Moderne Industrie, 1999Google Scholar
  47. Eulenbach, D.: Hydropneumatic level control elements. Further education TAE, October 2002Google Scholar
  48. Behmenburg C.: Alternative damping systems with a closed air supply system for air suspension vehicles. IIR conference "Suspension and damping in the chassis" 16./17.11.2004. Düsseldorf, 2004Google Scholar
  49. Fur, P.; Sonnenburg, R.: Determination of comfort-optimized design parameters of an air spring damper in a vehicle model - comparison with conventional hydraulic damping. VDI Conference on Calculation, 2004Google Scholar
  50. Müller, P.; Reichet, H.; Heyl, G.; Wanitschtke, R.; Gold, H.; Krauβ, H.-P.: The new Air-Damping-System of the BMW HP 2 Enduro. In: ATZ (2005), 10, pp. 848-857Google Scholar
  51. ZF Sachs: Technical manual for designers (motor vehicle shock absorbers) Google Scholar
  52. Baalmann, H.: End stop for shock absorbers. Conference on motor vehicle shock absorbers, House of Technology, 2003Google Scholar
  53. Gilsdorf H.-J.; Heyn, St.; Gundermann, F.: Amplitude-selective damping (ASD). Aachnen Colloquium Vehicle and Engine Technology 2004Google Scholar
  54. Wilhelm, R.: The damping system of the new A-Class. IIR conference "Suspension and damping in the chassis", Düsseldorf November 16/17, 2004Google Scholar
  55. Stretz, K.: Construction kit for dampers and strut module components. Conference on motor vehicle shock absorbers, Hasu tem technology, 1974Google Scholar
  56. Causemann, P.: Focus on the development of semi-active and active chassis. Technical conference, Fichtel U.Sachs AG. Sitev, 1990Google Scholar
  57. ZF Sachs: Internal presentationsGoogle Scholar
  58. Causemann, P.: Semi-active vibration damping. Further education, TAE, October 2002Google Scholar
  59. Spina, M.: Full-range rear architecture suspension using flex arm. Vehicle Dynamics Expo, Stuttgart 2004Google Scholar
  60. Volmer, J.: Transmission technology, guide. Berlin: VEB Verlag Technik, 1974Google Scholar
  61. Matchinsky, B.: Radführung der Straßenfahrzeuge, 2nd edition, Berlin / Heidelberg: Springer Verlag, 1998Google Scholar
  62. ZF Lemförder Fahrwerktechnik: Company photos, internal presentationsGoogle Scholar
  63. Reimpell, J.: Chassis technology: wheel suspensions. Würzbaden: Vieweg Verlag, 1999Google Scholar
  64. Seewald, A.; Kostyra, H.: Weight reduction in the chassis, opportunities and prospects. HdT conference chassis technology in Munich, 6. – 7. June 2000Google Scholar
  65. Dyckhoff J.; Haldenwanger, H.-G.; Rhyme, Herwig.: Handlebar made of fiber composite material with a thermoplastic matrix. Special edition ATZ / MTZ 1999. Wiesbaden: Vieweg Verlag, 1999Google Scholar
  66. Brungs, D.; Fuchs, H.: Light metals in automotive engineering, trends and future applications. Special edition ATZ / MTZ 1999. Wiesbaden: Vieweg Verlag, 1999Google Scholar
  67. Ersoy, M.: Construction catalogs for lightweight car axles. HdT Chassis Technology Conference in Munich 6. – 7. June 2006Google Scholar
  68. N.N.: Tribology Handbook. Wiesbaden: Vieweg Verlag, 2000Google Scholar
  69. Simrit, Freudenberg company catalog. Technical basics, 5th edition. Weinheim, 1997Google Scholar
  70. Executioner, E.: Chassis technology. Wiesbaden: Vieweg Verlag, 1993Google Scholar
  71. Goebel: Calculation and design of rubber springs. Berlin / Heidelberg: Springer Verlag, 1955Google Scholar
  72. Battermann, Koehler: Elastomer suspension - elastic mounting. Berlin / Munich: Ernst & Sohn, 1982Google Scholar
  73. ZF Sachs: company brochure. SchweinfurtGoogle Scholar
  74. Frantzen, M.; David, W.; Simon, M.; Ohra-aho, L.: Reduction of annoying steering torques. In: ATZ 106 (2004), pp. 434–440Google Scholar
  75. Crowd, M.; Rath, D.; Zeuner, T.: New chassis parts made of cast aluminum. In: ATZ 107 (2005), pp. 195–197Google Scholar
  76. Brändlein, J.; Eschmann, P.; Hasbargen, L.; Weigand, K.: The rolling bearing practice. Mainz: United Fachverlage, 1998Google Scholar
  77. Stauber, R. C; Cecco, C.: Modern materials in automotive engineering. In: Special edition ATZ / MTZ 2005Google Scholar
  78. Menk, Werner: Iron punctures aluminum. In: Automobil Industrie 3/2004, pp. 78–79Google Scholar
  79. Bender, H. J.; Cussler, K. H.; Hummel, R.; Reintgen, P.; Lindtner, E.; Soproni, I.; Jung, U.: Innovative lightweight swivel bearing made of welded sheet steel. Darmstadt: DVM report 132, 2005Google Scholar
  80. Pösl, W.: Bearings of the front wheels of front-wheel drive cars. In: The modern motor vehicle — a challenge to rolling bearing technology, 1983, pp. 24–29Google Scholar
  81. Pacejka, H. B.: The Tire as a Vehicle Component. Proceeding of XXVI FISITA Congress, ed. M. Apetaur. Prague, 1Google Scholar
  82. Van Oosten, J. J. M.; Savi, C.; Augustin, M.; Bouhet, O.; Sommer, J.; Colonot, J. P.: TIME, TIre MEasurements Force and Moment, A New Standard for Steady State Cornering Tire Testing. EAEC Conference, Barcelona, ​​1999Google Scholar
  83. Lugner, P.; Plöchl, M.: Tire Models for Vehicle Dynamics Analysis. Proceedings of the 3rd International Colloquium on Tire Models for Vehicle Dynamics Analysis (TMVDA), University of Technology, Vienna, Austria, August 30-31, 2004. Supplement to the International Journal Vehicle System Dynamics, Volume 43, pp. 48-62, Taylor & Francis, 2005Google Scholar
  84. Intelligent Tire Systems - State of the Art and Potential Technologies. Report of Project Number IST-2001-34372, APOLLO - Intelligent Tire for Accidentfree Traffic, May 22, 2003Google Scholar
  85. Bochmann, H. et al .: Status and current developments in tire pressure monitoring systems. In: ATZ Automobiltechnische Zeitschrift 107 (2005), 2, pp.110–117Google Scholar
  86. Fennel, H. et al .: Tire pressure monitoring - a useful extension for electronic brake systems from Continental Teves. System Partners 2002. Special edition by ATZ and MTZ 2002, pp. 24–31Google Scholar
  87. Becherer, Th. et al .: The sidewall torsion sensor SWT. In: ATZ Automobiltechnische Zeitschrift 102 (2000), 11, p. 946Google Scholar
  88. Stöcker, J. et al .: The “intelligent tire” - interim results of an interdisciplinary research cooperation. In: ATZ Automobiltechnische Zeitschrift 97 (1997), 12, p. 824Google Scholar
  89. Ludwig, D. et al .: Measurements in the tire using integrated sensors. Darmstadt tire colloquium. Update report VDI series 12, no. 285, pp. 89-100, 1996Google Scholar
  90. Cyllik, A. et al .: The intelligent tire & # 2014; Possible uses of the tire profile sensor. Tires, chassis, road surface, VDI report no. 1632, pp. 115–124. Düsseldorf: VDI-Verlag, 2001Google Scholar
  91. Gustafsson, F.: Slip-based estimation of tireroad friction. In: Automatica 33 (1997), 6, pp. 1087-1099 CrossRefMathSciNetGoogle Scholar
  92. Gustafsson, F.: Estimation and change detection of tire friction using the wheel slip. In: IEEE Control System Magazine 18 (1998), 4, pp. 42-49 CrossRefGoogle Scholar
  93. Gnadler, R.; Marwitz, H.: New system for determining the traction potential during driving. In: ATZ Automobiltechnische Zeitschrift 106 (2004), 5, pp. 458–467Google Scholar
  94. Wies, B.; Lauer, P.; Mundl, R.: Improved traction through synergies from winter tire development and ABS control systems. Tires, chassis, road surface, VDI report no. 1632, pp. 319–338. Düsseldorf: VDI-Verlag, 2001Google Scholar
  95. Michelin: The tire - grip. 2005Google Scholar
  96. Backfisch, K.-P.; Heinz, D. S.: The new tire book. Motorbuch Verlag, 2000Google Scholar
  97. TÜV-Süd Automotive: TÜV SÜD Mark - Tire Approval Test Procedure. 2006 Google Scholar
  98. Schick, B.; Gimmler, H.; Rauh, J.; Witschass, S.: 3DTRACK - Give the simulation the chance for a better work! Mobile, high resolution topology and roughness measurement of road surface to create 3D track models. Fisita World Congress, 2006Google Scholar
  99. Frey, M.; Gnadler, R.; Güsnter, F.: Investigation of the power loss on car tires. VDI reports 1224. Düsseldorf: VDI-Verlag, 1995Google Scholar
  100. Reithmaier, W.; Staude, M.: Energy and Cost Efficient Tires, tire.wheel.tech, 2006Google Scholar
  101. Netsch, L.; Ito, Yuji; Schick, B.; Kraus, A.; Berkmüller, M.: T3M - TÜV Tire Temperature Method. A Breakthrough Methodology for Evaluating Tire Robustness, Performance and Wear. Fisita World Congress, 2006Google Scholar
  102. Hofmann, H.; Comforter, M.: Motor vehicle wheel bearings: News for mass production. In: Wälzlagertechnik 1983-2 and 1984-1, pp. 20–27Google Scholar
  103. Hofmann, H.; Feser, W.: Motor vehicle wheel bearings: tendency towards bearing units even with non-driven wheels. In: Wälzlagertechnik 1985, pp. 12-18Google Scholar
  104. Hofmann, H.; Bayer, O.: ABS-compatible wheel bearings. In: Wälzlagertechnik Industrietechnik, 1990Google Scholar

Copyright information

© Vieweg + Teubner Verlag | GWV Fachverlage GmbH, Wiesbaden 2008