# How can you prove that 3 1

The required proof is often given by contradiction. I want to do that too first. As a second proof, I will give that by complete induction. It will be seen that the contradiction proof is more laborious. Namely, the contradiction is generated exactly with the constructive idea for the complete induction.

**If there really are an infinite number of prime numbers**, one certainly cannot write down all prime numbers. But you can check the possibility that there are only a finite number of prime numbers and think about this possibility consistently. At the end of this reflection, you will find that something is wrong. And if an end result based on the laws of logic obviously cannot be true, it has been proven that the assumption made at the beginning cannot be true either. According to mathematical logic, something wrong can never follow from something right. This proof technique is called a **Proof of contradiction**.

**Accepted** there would only be a finite number of prime numbers p_{1}, ...., p_{n}.

Then consider the number p = p_{1}* ... * p_{n}+1, which is obviously not due to any of the p_{i}, i = 1, ..., n is divisible. Then p, which of all p_{i} is different, obviously be a prime number.

That is a contradiction to assumption.

So the assumption was wrong that there must be an infinite number of prime numbers.

Instead of proving by contradiction, one would have that too

**direct proof**being able to lead. It goes like this:

**Let the first n prime numbers be known.** Then consider number q = p_{1}* ... * p_{n}+1, which is obviously not due to any of the p_{i}, i = 1, ..., n is divisible.

We don't know whether q is a prime number, so let's look at both possibilities now. **Case 1: q is a prime number.** Then we found another prime number. **Case 2: q is not a prime number.** Then there is a proper divisor of q. (A real divisor is neither 1 nor q itself).

According to the construction of q, this divisor is not one of the prime numbers p_{1}, ..., p_{n}. So there must be another prime that divides q. This "other" prime number is greater than p_{n}. I will call this new prime p^{*}. p^{*} is not necessarily the n + 1 -th prime (there may be other prime numbers between the largest prime number among the first n prime numbers and the new prime number), but the existence of n prime numbers implies the existence of **at least** n + 1 prime numbers. That way of inferring is the **complete induction**. The existence of a prime number suffices as an induction start. Starting from p_{1}= 2 one proves the existence of another prime number.

If you are wondering whether q is not always a prime number, I will give you a counterexample:

2 * 3 * 5 * 7 * 11 * 13 + 1 = 30031 is not a prime number, because 30031 = 59 * 509.

One must therefore be careful in the induction step.

From the first n prime numbers p_{1}, ...., p_{n} results in the existence of another. The proof does not say what this new prime number is.

And the prime number p^{*} is not necessary the (n + 1) -th prime number. But if it is up to p^{*} there are more than n + 1 prime numbers, then that's enough. One then looks for the first n + 1 from the more than n + 1 prime numbers and can thus carry out the induction step from n + 1 to n + 2.

- How do you finish drywall outside the corners
- Are harem pants unisex
- Can you share your life journey
- What does a formal dress look like?
- What is Proc Tabulate in SAS
- Are Costco Diamonds of good quality
- Is there a nude resort in Thailand
- Are you worth being happy
- Why are figs not considered vegan
- Why do they put animals on coins
- What is a human resource manager
- There would be an infinity if the universe didn't do this
- Is opening a One Price Cleaner profitable?
- Wouldn't it be super dangerous to terraform Mars
- What are the top products from Amazon
- Which two widths are actually points
- What is private life for you
- What are your success habits
- How do I avoid office politics
- Healthy foods are delicious
- How do grocery stores get their inventory
- What makes you an exceptional person
- Is it possible to reuse carbon filters
- Why can't God speak for himself?